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Predictive Analytics for Retention 
in Care in an Urban HIV Clinic
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Consistent medical care among people living with HIV is essential for both individual and public 
health. HIV-positive individuals who are ‘retained in care’ are more likely to be prescribed antiretroviral 
medication and achieve HIV viral suppression, effectively eliminating the risk of transmitting HIV to 
others. However, in the United States, less than half of HIV-positive individuals are retained in care. 
Interventions to improve retention in care are resource intensive, and there is currently no systematic 
way to identify patients at risk for falling out of care who would benefit from these interventions. We 
developed a machine learning model to identify patients at risk for dropping out of care in an urban HIV 
care clinic using electronic medical records and geospatial data. The machine learning model has a mean 
positive predictive value of 34.6% [SD: 0.15] for flagging the top 10% highest risk patients as needing 
interventions, performing better than the previous state-of-the-art logistic regression model (PPV of 
17% [SD: 0.06]) and the baseline rate of 11.1% [SD: 0.02]. Machine learning methods can improve the 
prediction ability in HIV care clinics to proactively identify patients at risk for not returning to medical 
care.

Consistent medical care is essential for the health of people living with HIV. HIV-positive individuals who receive 
regular medical care are more likely to receive antiretroviral therapy, less likely to develop Acquired Immune 
Deficiency Syndrome (AIDS), and have improved survival rates compared to HIV-positive individuals who do 
not receive regular medical care1–3. In the field of HIV medicine, patients who receive regular medical care are 
considered ‘retained in care.’ Retention in care is not only important for the individual health of people living 
with HIV, but also for public health. HIV-positive individuals who are retained in care and taking antiretroviral 
therapy are able to suppress the HIV viral level in their serum to undetectable levels, effectively eliminating the 
risk of transmitting HIV to others. Accordingly, retention in care is a critical pillar of public health agency plans 
to eliminate HIV transmission in the United States4–6.

Despite the clear benefits of retention in care for individual and public health, less than half of individuals 
living with HIV in the U.S. are retained in care. Lack of access to healthcare is one reason that patients may not be 
retained in care7. However, for patients who lack health insurance, state and federal programs such as the Ryan 
White HIV/AIDS Program provide funding to pay for HIV care visits and antiretroviral medications. Despite 
these programs, many patients living with HIV still do not regularly attend medical appointments. Additional 
barriers to retention in care remain, including mental illness, substance use, insecure housing, poverty, neighbor-
hood violence, and stigma8–16.

Interventions that are effective for improving retention in care include intensive case management, peer navi-
gation, and multi-faceted outreach programs17–25. These interventions are resource intensive and difficult to pro-
vide for all patients in limited resource settings. Furthermore, not all patients are at risk for retention failure nor 
would benefit from intensive retention interventions. Therefore, methods are needed to identify and prioritize 
HIV-positive patients at highest risk for falling out of medical care.

Existing work on this problem has focused on two aspects: (1) using retrospective analysis to identify popu-
lation level subgroups at risk for dropping out of care, such as African-American men who have sex with other 
men26, and (2) understanding root causes and barriers to retention in care. These approaches may be useful in 
describing vulnerability to falling out of care, but are less useful in proactively targeting retention resources. 
Prioritizing interventions using group level risk factors (e.g., men who have sex with men) can waste already 
scarce resources because it presumes that all members have uniform risk, neglecting individual circumstances 
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and behaviors. In contrast, a more fine-grained machine learning approach to identify individuals at risk for fall-
ing out of care can overcome these shortcomings by building models tailored to individual features, rather than 
just group characteristics.

Machine learning methods are particularly well suited for early warning systems that inform interventions for 
patient retention because they (1) are optimized for future predictive accuracy, (2) can detect non-linear complex 
interactions (as opposed to traditional methods), (3) are able to rank and prioritize individuals according to risk 
score rather than group risk, and (4) combine multi-source data at different levels of granularity. Traditional 
methods (e.g., differential equation modeling or agent-based modeling) focus on understanding HIV transmis-
sion in aggregate rather than at the individual level and are not optimized for prediction. Accordingly, the aim 
of this study was to develop a machine learning predictive model of retention in HIV care among individuals in 
an urban HIV care clinic using electronic medical record (EMR) data, geospatial data, and US Census data. Our 
machine learning models are scalable, adaptive, and produce patient-level dynamic predictions.

Methods
Study sample.  HIV-positive individuals 18 years of age and older who attended at least one medical appoint-
ment at the University of Chicago adult HIV care clinic between January 1, 2008 and May 31, 2015 were included 
in the study. The University of Chicago adult HIV care clinic is located on the south side of Chicago, a major 
U.S. HIV epicenter27. For all eligible patients, the following data were collected from the EMR: demographics, 
insurance information, other medical conditions, medications, HIV care provider, substance use history, and 
laboratory test results. Appointment attendance history including attended, cancelled, and missed visits was col-
lected from the beginning of the study period up to one year after study enrollment (through May 31, 2016). 
Both billing diagnoses as well as clinician-assigned diagnoses documented in the “problem list” section of the 
EMR were collected. All medical encounters within the University of Chicago were collected including outpatient 
appointments in the HIV clinic, all other outpatient appointments, hospitalizations, and Emergency Department 
visits. Laboratory test results collected included HIV viral load, lymphocyte subset data (e.g., CD4 count), sex-
ually transmitted infection (STI) test results, and toxicology test results. Patients’ addresses were geocoded and 
the travel distance and travel time to the clinic as well as the crime rate along the travel rate were calculated. 
Geocoding methods have been previously described28. Using data from the American Community Survey (US 
Census Bureau), characteristics of a patient’s community at the census tract level including racial composition, 
fraction of population on Supplemental Nutrition Assistance Program, commute characteristics and education 
levels were collected29. Patients were censored, meaning the machine learning system no longer generated a pre-
diction for the patient for a given window of time, when they transferred care to another clinic or died.

Predictor variables.  Using the data described above, we generated a set of ~ 800 predictor variables (fea-
tures) to be considered for inclusion in the machine learning models. Prior literature was used to guide feature 
creation, including factors previously shown to be associated with retention in HIV care, such as age, CD4 count, 
substance use, psychiatric illness, and prior visits8–17. Categories of features included demographics, diagnoses, 
location-based features, laboratory test results, medical visits, and specific providers seen. For each feature, meas-
ures were aggregated by time (e.g., count for the past six months, standard deviation for the past year, etc.) or time 
and space (e.g., the number of thefts in the patient’s residential census tract in the past six months). We explored a 
range of values for the time (6 months, 1 years, 3 years, all history) and space (by zipcode and census tract) aggre-
gations as well as different aggregation functions (mean, minimum, maximum, standard deviation). Categorical 
variables (such as race) were dummified. We detail this list in the appendix (Appendix eTable 1).

This methodology allows the machine learning model to use the time and space aggregation of the feature that 
is most predictive of the final outcome. For example, if more recent (6 month) viral loads are better correlated 
with retention in care than viral loads from several years ago, the method will use the average viral load in the past 
six months rather than average viral load for the past three years.

Missing data.  Features with missing data had values imputed with the choice of value depending on the 
variable (e.g., a missing birth date resulted in an age assignment of the mean age of the population). For more 
details, see appendix (eTable 1). We also included a flag for whether or not the value was imputed as an additional 
predictor variable, allowing the model to use the missingness of a predictor variable as a predictor itself.

Study outcomes.  Two outcomes were studied: (1) retention in care and (2) access to care. Retention in care 
was defined as attending at least 2 HIV care visits greater than 90 days apart within a 12-month period30. This 
definition of retention is from the Health Resources and Services Administration HIV/AIDS Bureau (HRSA 
HAB). While there is no true “gold standard” of retention in care, this definition has been shown to be correlated 
with patient health outcomes including HIV viral suppression31. Access to care (also referred to as a 6 month 
gap) is defined as having a single HIV care visit within a 6 month period31,32. This metric is used by public health 
departments for the purposes of surveillance27. The outcome was predicted at the time of each patient’s HIV care 
appointment, replicating the workflow (and data available) in the clinic, in which the patient arrives for their 
appointment and then receives a risk score. This predicted risk score can then inform and prioritize interventions 
to improve future retention in care.

Model training, validation, and selection.  We tested the performance of 5 machine learning models in 
comparison to the current methods used by HIV clinicians for predicting retention and access to care. Methods 
comprised of regularized logistic regressions (l1 and l2), gradient boosting decision trees, decision trees, extra 
trees, and random forests. The five machine learning models were chosen to cover a large spectrum of possible 
classifiers and the spectrum of linear, tree, tree ensemble, and boosting models. Using Triage33, ~100 hyperpa-
rameter combinations for each model were tested, then fit to each training set34. Validation was performed using 
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temporal cross validation35. Temporal cross validation was used instead of k-fold cross-validation to account for 
serial correlation and temporal patterns in the data and correctly replicate the modeling workflow in deployment. 
The data were divided into sets of model building cohorts and validation cohorts (alternatively, training set and 
test set), each of which is split by time (eFig. 1). This allows models to be developed on all appointments occurring 
before the year of prediction and tested on appointments occurring during the year of prediction. Model report-
ing complies with the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or 
Diagnosis (TRIPOD) reporting guidelines36.

Model performance was evaluated using the positive predictive value (PPV) with a population threshold of 
10% (i.e., appointments were ranked by their scores and the top 10% of those were classified as high risk of 
retention failure). The PPV is the percentage of individuals correctly identified by the model as at risk that go on 
to drop out of care (i.e., the number of true positives divided by the number of predicted positives). In order to 
use retention resources efficiently, the system should minimize false positives, which would minimize wasting 
resources on patients who would not drop out of care. The choice of threshold was driven by the authors’ clinic’s 
capacity for intervention – 10% of the population is approximately 150 appointments a year. We chose not to use 
Area Under the Curve (AUC), which is often reported for predictive models, because it is not appropriate for 
our limited resources setting as it captures the overall performance across every threshold. To prioritize a small 
number of individuals for intervention, positive predictive value ensures the model selected will minimize false 
positives within the intervention set.

For each model type, we chose the hyperparameters that consistently had high performance for each of the 
validation sets (i.e., each of the time periods). Specifically, we chose the model that most frequently was within 
5% of the PPV of the best possible model over each time period (e.g., if the best possible PPV for a time period 
was 0.80, all models above 0.75 PPV were selected). This ensures that the final model selected is one that is both 
stable and has high performance.

Performance evaluation.  Predictions were made at the appointment level to simulate deployment in a clin-
ical setting. For any prediction at the time of appointment, the training data and predictor variables included only 
information known before that point in time. We compared the PPV at 10% of the machine learning models to a 
logistic regression model based on the literature-identified features37, referred to as the ‘previous-state-of-the-art’ 
model. This ‘previous-state-of-the-art’ model uses the factors that clinicians might use to predict whether a 
patient will be retained in care based on previously published literature37,38. These features included demograph-
ics, age, race, gender, diagnosis of psychiatric illness, substance use history, viral load, and time since HIV diag-
nosis. We also compare our model results with the prior (the fraction of individuals who are not retained in care 
or not accessing care).

Bias evaluation.  Machine learning models deployed in this setting with many at-risk groups involved have 
the potential to disproportionately affect some sub-groups and exacerbate disparities. We audited our models 
using Aequitas39 to ensure that prediction errors do not disproportionately impact certain protected classes (e.g., 
racial minorities).

While bias can be measured in many ways, we focus on metrics that measure disproportionate false negatives 
since failing to detect people at risk for retention failure is presumably more harmful than detecting false positives 
in these groups. A patient at risk for retention failure who does not receive an intervention loses opportunities 
for underlying challenges to be addressed (e.g., transportation might be a challenge and a case worker might be 
able to help navigate public transit). On a group level, a group can be negatively impacted if they systematically do 
not receive an intervention when it is needed. To measure this impact, we use False Omission Rate (FOR), which 
is defined as the number of false negatives divided by the number of negative predictions (alternatively Negative 
Predictive Value). Identifying a patient to be falsely at risk carries less negative impact to the patient, though the 
clinic intervention can become more inefficient when the clinic staff intervene on patients who are falsely iden-
tified as high risk.

Given the racial composition of the patient population, we focused our attention on auditing models for parity 
in FOR by race. Specifically, we considered a model to be disparate if its FOR ratio of Black vs White is either less 
than 0.9 or greater than 1.1.

Implementation.  The system was built using Triage, an open source machine learning tool33, for building 
features, running models across a large hyperparameter space, model selection, and model evaluation. The data 
and results are stored in a PostGreSQL database. We used Python’s scikit-learn package for the machine learning 
models. The configuration file used to specify features and models can be found on GitHub34.

Ethical review of study and waiver of consent.  This study was approved by the University of Chicago 
Institutional Review Board (IRB). The IRB waived the need for informed consent as part of the study approval. 
Research was carried out in accordance with the ethical standards in the Declaration of Helsinki.

Results
Over the study period, 713 patients attended at least one HIV care appointment (Table 1), accounting for 11,445 
total visits. Of these appointments, between 8–12% of appointments were not followed by a subsequent appoint-
ment at least 90 days later within a 12-month period, indicating a lack of retention in care for that time period 
(eFig. 2). Also, of these appointments, approximately 10% of the appointments did not have a subsequent appoint-
ment in a six-month period (access to care).

Model evaluation.  Retention in care.  The previous-state-of-the-art model had an average PPV of 14.1% 
[SD: 0.04] throughout the study period for the top 10% of predicted risk individuals, an improvement of 100% 
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compared to the prior. The best performing models from each class of models had similar performance (Fig. 1 
(top)). The best performing model was a random forest with 1000 estimators, maximum tree depth of 5, each leaf 
node having at least 2.5% of the samples, and each tree split requiring at least 10 samples. This model had a 200% 
improvement over the prior of 8–12% and 100% improvement over the previous-state-of-the-art model (PPV 
of 24.5% [SD: 0.01] for the top 10%). A simple decision tree had a lower performance with a PPV of 15.5% [SD: 
0.04].

Access to care.  The best performing model for access to care was a random forest with 1000 estimators, no spec-
ified maximum tree depth, each leaf node having at least 2.5% of the samples, and each tree split requiring at least 
10 samples. This model had an average PPV of 34.6% [SD: 0.15] throughout the study period for the top 10% of 
appointments, a 300% improvement over the prior and 200% over the previous-state-of-the-art model (PPV of 
17% [SD: 0.06]) (Fig. 1 (bottom)). This corresponds to approximately 50 additional appointments that are flagged 
as high risk of not having a follow-up appointment compared with the previous state of the art model.

While we focus on PPV at 10%, the chosen model can also be used to support interventions on a larger frac-
tion of the population. eFigure 3 shows the change in PPV and sensitivity at different levels of intervention.

Key predictor variables.  The models for both retention and access to care rely on similar predictor vari-
ables, sharing 80% of the top 20 predictors. A patient’s history of past retention in care and previous HIV care 
encounters are important predictors for the machine learning models for both retention in care and access to care 
in 6 months (Fig. 2). In general, the previous-state-of-the art model found demographic features important. The 
top features of the previous-state-of-the art model were demographic features such as race, ethnicity as well as 
features such as days since first appointment and number of days since diagnosis. The best Random Forest model 
initially found these features predictive, but as the system collected more data the Random Forest model found 
the medical history of a patient–retention history, appointments, history of lab tests–to be more predictive.

Bias evaluation.  The machine learning model for retention in care had FOR 0.26 [SD 0.16] for black patients 
compared to 0.31 [SD 0.17] for white patients (Fig. 3). The previous-state-of-the-art model had FOR of 0.27 [SD 
0.17] and 0.32 [SD 0.17] for black and white patients respectively. The machine learning model for access to care 
in six months had FOR 0.24 [SD 0.04] for black patients compared to 0.25 [SD 0.08] for white patients (Fig. 4). 
The previous-state-of-the-art model had FOR of 0.26 [SD 0.05] and 0.29 [SD 0.08] for black and white patients 
respectively. When selecting for models with minimal overall FOR disparity, there is a tradeoff – the average PPV 
of the lower disparity models is 18% and 22% lower for retention in care and accessing care respectively. The FOR 
ratios are calculated over a relatively small sample. The predicted positive group is approximately 120 appoint-
ments per year which are split into different racial categories. As a result, this metric is susceptible to variation 
from small population size.

Characteristics Value

Age at first visit in study period, Mean (SD) 47.3 (13.6)

Female, No. (%) 314 (44%)

Race

African American, No. (%) 585 (82%)

White, No. (%) 93 (13%)

Other, No. (%) 35 (5%)

Insurance

Private, No. (%) 312 (44%)

Medicaid, No. (%) 309 (43%)

Medicare, No. (%) 85 (12%)

Number of attended appointments, Mean (SD) 19.5 (17)

Census-based Aggregates

Fraction in zipcode that are African American, Mean (SD) 0.81 (0.29)

Fraction in zipcode with less than $10 k income, Mean (SD) 0.07 (0.04)

Fraction in zipcode with income between $10 k and $15 k, Mean (SD) 0.03 (0.02)

Fraction in zipcode on SNAP, Mean (SD) 0.14 (0.08)

Fraction in zipcode with high school education, Mean (SD) 0.38 (0.14)

Fraction in zipcode with some college, Mean (SD) 0.19 (0.06)

Fraction in zipcode with bachelors, Mean (SD) 0.13 (0.09)

GIS measures

Distance from residence to clinic (miles), Mean (SD) 4.88 (3.65)

Travel time in minutes (public transit) from residence to clinic, Mean (SD) 43.5 (19.4)

Travel time in minutes (car) from residence to clinic, Mean (SD) 18.8 (10.7)

Average crime rate on route from from residence to clinic, Mean (SD) 0.11 (0.03)

Table 1.  Characteristics of Study Population of 713 University of Chicago HIV Clinic Patients from January 1, 
2008 through May 31, 2015.
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Discussion
This study demonstrates the potential of machine learning models to identify individual patients at the highest 
risk for falling out of HIV care, allowing busy HIV care clinics to direct limited resources toward patients who 
need them the most. To our knowledge, this is the first use of machine learning to understand retention in care 
among individuals living with HIV. Clinicians have difficulty predicting patients’ risk for missing appointments, 
and may be subject to bias in determining which patients would benefit from resource-intensive retention inter-
ventions40. Our machine-learning model had a higher PPV and was less biased than the previous-state-of-the-art 
logistic regression model.

Furthermore, while most prior literature regarding retention in care examines factors associated with reten-
tion at a single point in time, our model dynamically predicts retention longitudinally. Patients’ appointment 
attendance patterns change over time, with patients often transitioning in and out of care41. The method we devel-
oped provides a retention risk score at the visit level and recalculates the score at each subsequent visit, incorpo-
rating new data that becomes available as well as characteristics that change over time (e.g., prior appointment 
attendance, HIV viral load, substance use patterns, change of address, etc.).

We modeled two different definitions of healthcare utilization: retention in care and access to care. Both defi-
nitions are used in practice and described in the literature. Overall, the machine learning model for access to 
care had a greater performance improvement over the previous-state-of-the-art model compared to the model 
for retention in care. Therefore, the model for access to care may be more efficient to implement in practice for 
the same amount of intervention resources. This will have to be decided upon based on a clinic’s priorities for 
intervention.

We found that the most important predictor variables in the machine learning models for both retention and 
access were based on previous retention history and clinic visit history (e.g., total number of attended appoint-
ments). This is in keeping with prior literature that has shown that patients’ history of missing appointments is 
predictive of future missed appointments. Pence et al. reported that the most important predictor of future missed 
visits among HIV-positive patients is prior missed visits42. Other studies have found that low initial CD4 count 
and elevated HIV viral load are risk factors for poor retention11,13. We found that the existence of CD4 or viral 

Figure 1.  Positive Predictive Value of highest 10% risk scores for Retention in Care (top) and Access to Care 
(bottom) across model space: Positive Predictive Value (PPV) measures how many appointments were correctly 
predicted to have no follow-up (as defined by the HRSA HAB definition of retention) among the top 10% of 
appointments. The 10% threshold was chosen to match the resources the clinic has for launching an intensive 
intervention. The machine learning models shown below are the best performing model (blue) and the best 
performing model of an alternate model type (for retention in care, a decision tree, and for access to care in 6 
months, a logistic regression).
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load tests acts as a proxy for the existence of an appointment and is thus more relevant to retention than the exact 
values of the laboratory tests.

Other factors that have been reported in prior literature to be related to retention including race and age did 
not figure prominently in our model. However, these were important predictors in models built on earlier time 
periods, indicating that when other historical information is not available, these factors can be useful predictors. 
Additionally, our population was 82% African American and with a mean age of 48 years. We may not have had 
sufficient numbers of other races or young patients for these factors to influence retention outcomes in our model. 
Of note, geospatial factors including travel time to clinic, neighborhood crime rate, and neighborhood charac-
teristics were not among the most important predictive features in the models. This may be because many of our 
patients live in neighborhoods with similar characteristics (i.e., high poverty, similar crime rates) on the south 
side of Chicago. When our methodology is applied to a different and more socioeconomically diverse patient 
population, these features may rank higher in importance. To our knowledge, this is the first use of bias auditing 
of predictive models in an HIV care setting. Further work is needed to understand how to mitigate the risk of 
exacerbating disparities.

Our study has several limitations. EMR data regarding patients’ diagnoses, medications, etc. may be inac-
curate if providers do not accurately document and update patient data at each visit. Prior studies have shown 
wide variability in accuracy of billing diagnoses and incomplete problem list documentation in the EMR43,44. We 
attempted to limit inaccuracy due to poor documentation by incorporating multiple fields from the EMR. For 
example, patients with a history of substance abuse were detected not only by examining billing diagnoses for 
substance abuse, but also by collecting clinician-assigned diagnoses in the problem list, social history documen-
tation of substance abuse, and toxicology screen results. Additionally, our EMR database only stores each patient’s 
most recent home address. Therefore, we were unable to account for changes in patients’ home address or living 

Figure 2.  Features Learned by Machine Learning Models for (top) Retention in Care and (bottom) Access to 
Care: The feature importance of the random forest is the mean of the gain in purity of each of the underlying 
decision trees and is similar to logistic regression coefficients. The maximum importance within each class of 
predictor variables shows that the most important predictors for the model are based on the history of retention 
and the previous infectious disease clinic visits.
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situations in our geospatial analyses. Furthermore, certain factors that may have an important impact on reten-
tion in care may not be captured within structured fields of the EMR, i.e., life stressors, social support, child care 
or other responsibilities, etc. In the future, we plan to incorporate natural language processing of unstructured 
clinical notes into our model to detect these factors.

Other sites can replicate the process presented here for extracting electronic data and incorporating them 
into machine learning systems using the in-house framework33 and our open source code. The vast majority of 
outpatient medical practices in the U.S. utilize EMRs45, allowing them to replicate our process. Our open source 
code is available at https://github.com/dssg/hiv-retention-public.

In summary, we have created a machine learning system to predict which patients are most likely not to be 
retained-in-care that creates a longitudinal and panoramic view of the patient, incorporating different types of 
data at different levels of granularity, that outperforms the previous-state-of-the-art model as well as being more 
adaptable, scalable, and fair. Future areas of study include incorporating the model into the EMR to allow it to be 
used in real time to direct retention resources for patients most at risk for falling out of care.

Conclusions
Retention in care is crucial for individual and public health, yet the majority of people living with HIV in the 
United States are not retained in care. This study demonstrates that a machine learning framework to derive an 
optimal model to identify individuals at risk for falling out of care has the potential to improve retention. Our 
machine learning model was compared to logistic regression model and shown to have superior performance, be 
more adaptive, and have less disparate impact on minorities. Such a model will allow more precise prioritization 
of retention resources to patients likely to benefit most.

Figure 3.  Trade off of performance vs fairness in models for retention in care: (top) There is a trade off in 
choosing models with high performance (x-axis) and minimal bias (y-axis). The circles show the average PPV 
and FOR. The lines show distribution of both PPV and FOR ratio over the different time periods. The thick 
lines show the first and third quartiles; the thin lines show the 5% and 95% percentiles. The purple band is the 
band of minimal disparity in FOR i.e., the ratio of the FOR for Black vs White races is within [0.9, 1.1] (bottom). 
Over time, the disparity in FOR for both our best performing machine learning models reduces. The machine 
learning model that is selected for best stable performance (blue) is better performing than the previous state 
of the art model (red). The best decision tree model (orange) has slightly lower performance and similar FOR 
ratios. The remaining models (black) were chosen for minimal disparity.
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Data availability
The datasets generated during and/or analyzed during the current study are not publicly available because they 
contain protected health information but are available from the corresponding author on reasonable request.
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